Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 16(5)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34144536

RESUMO

Through their anisotropic cellular mesostructure and differential swelling and shrinking properties, hygroscopic plant structures move in response to changes in the environment without consuming metabolic energy. When the movement is choreographed in sequential time steps, either in individual structures or with a coordinated interplay of various structural elements, complex functionalities such as dispersal and protection of seeds are achieved. Inspired by the multi-phase motion in plant structures, this paper presents a method to physically program the timescale and the sequences of shape-change in 4D-printed hygromorphic structures. Using the FDM 3D-printing method, we have developed multi-layered, multi-material functional bilayers that combine highly hygroscopic active layers (printed with hygroscopic bio-composite materials) with hydrophobic restrictive and blocking layers (printed with PLA and TPC materials). The timescale of motion is programmed through the design of the mesostructured layers and 3D-printing process parameters, including thickness (number of printed active layers), porosity (filling ratio of the active layer), and water permeability (filling ratio of the blocking layer). Through a series of experiments, it is shown that the timescale of motion can be extended by increasing the thickness of the active layer, decreasing the porosity of the active layer, or increasing the filling ratio of the hydrophobic restrictive and blocking layers. Similarly, a lower thickness of the active layer and lower filling ratio of all layers result in a faster motion. As a proof of concept, we demonstrate several prototypes that exhibit sequential motion, including an aperture with overlapping elements where each completes its movement sequentially to avoid collision, and a self-locking mechanism where defined areas of the structure are choreographed to achieve a multi-step self-shaping and locking function. The presented method extends the programmability and the functional capabilities of hygromorphic 4D-printing, allowing for novel applications across fields such as robotics, smart actuators, and adaptive architecture.


Assuntos
Movimento , Impressão Tridimensional , Interações Hidrofóbicas e Hidrofílicas , Movimento (Física) , Porosidade
2.
J Data Semant ; 7(1): 29-46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497460

RESUMO

A domain-specific ontology for IT benchmarking has been developed to bridge the gap between a systematic characterization of IT services and their data-based valuation. Since information is generally collected during a benchmark exercise using questionnaires on a broad range of topics, such as employee costs, software licensing costs, and quantities of hardware, it is commonly stored as natural language text; thus, this information is stored in an intrinsically unstructured form. Although these data form the basis for identifying potentials for IT cost reductions, neither a uniform description of any measured parameters nor the relationship between such parameters exists. Hence, this work proposes an ontology for the domain of IT benchmarking, available at https://w3id.org/bmontology. The design of this ontology is based on requirements mainly elicited from a domain analysis, which considers analyzing documents and interviews with representatives from Small- and Medium-Sized Enterprises and Information and Communications Technology companies over the last eight years. The development of the ontology and its main concepts is described in detail (i.e., the conceptualization of benchmarking events, questionnaires, IT services, indicators and their values) together with its alignment with the DOLCE-UltraLite foundational ontology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...